A $\frac{3}{2}$-approximation for the Stable Marriage Problem with ties

Felix Bauckholt

October 4, 2017
(1) The Problem

- The Solution
- What about optimal stable matchings?
(2) The Variation
- The Idea
- The Details
- The Proof of the Approximation Factor
(3) Other Stuff I Was Doing (not part of the talk)

The Problem

The Standard Problem

- n men, n women want to marry (each other)
- Each man ranks a subset of the women, each woman ranks a subset of the men
- We want to assign men and women to each other, such that the matching is stable.

More Formally

- Men M, women W.
- Each man m ranks subset $P(m) \subseteq W$ with a linear ordering \leq_{m}.
A woman w ranks $P(w) \subseteq M$ with \leq_{w}.
- (m, w) is an acceptable pair if $w \in P(m)$ and $m \in P(w)$.

More Formally

- Men M, women W.
- Each man m ranks subset $P(m) \subseteq W$ with a linear ordering \leq_{m}.
A woman w ranks $P(w) \subseteq M$ with \leq_{w}.
- (m, w) is an acceptable pair if $w \in P(m)$ and $m \in P(w)$.
- A matching is a subset μ of acceptable pairs such that each man and each woman only occur once.
- In a matching μ, we say a man m is single if m doesn't occur, otherwise let $\mu(m)$ be m 's partner. Same for women.

Stability

Definition

A matching μ is not stable iff there is an acceptable pair (m, w) such that:

- m is single or $\mu(m)<_{m} w$, and
- w is single or $\mu(w)<w$.

Stability

Definition

A matching μ is not stable iff there is an acceptable pair (m, w) such that:

- m is single or $\mu(m)<_{m} w$, and
- w is single or $\mu(w)<{ }_{w} m$.

More positively:

Definition

A matching μ is stable iff for each acceptable pair (m, w), we have

- $\exists\left(m, w^{\prime}\right) \in \mu$ such that $w^{\prime} \geq_{m} w$, or
- $\exists\left(m^{\prime}, w\right) \in \mu$ such that $m^{\prime} \geq{ }_{w} m$.

The Solution

Stable marriage exists and can be found easily

 The Gale-Shapley algorithm (1962)- Men propose to women
- Women tentatively accept proposals, become engaged
- If a woman receives two proposals, she rejects the less desirable man

Stable marriage exists and can be found easily

The Gale-Shapley algorithm (1962)

- Men propose to women
- Women tentatively accept proposals, become engaged
- If a woman receives two proposals, she rejects the less desirable man

Algorithm 2 The Gale-Shapley algorithm

while there is a single man m who hasn't proposed to all women in $P(m)$ do Let w be the most preferred woman in $P(m)$ that m hasn't proposed to if w is engaged to a man m^{\prime} then w becomes engaged to $\max _{w}\left(m, m^{\prime}\right) ; w$ rejects $\min _{w}\left(m, m^{\prime}\right)$. else w becomes engaged to m. end if
end while
return $\mu=\{(m, w): m$ is engaged to $w\}$.

Correctness of the Gale-Shapley algorithm

Observation

Correctness of the Gale-Shapley algorithm

Observation

- Once a woman becomes engaged, she stays engaged

Correctness of the Gale-Shapley algorithm

Observation

- Once a woman becomes engaged, she stays engaged
- Furthermore, her partners get more desirable over time
- This means that if m proposes to w, then w is married in μ and $\mu(w) \geq_{w} m$.

Correctness of the Gale-Shapley algorithm

Observation

If m proposes to w, then w is married in μ and $\mu(w) \geq_{w} m$.

Theorem

The matching μ is stable.

Correctness of the Gale-Shapley algorithm

Observation

If m proposes to w, then w is married in μ and $\mu(w) \geq_{w} m$.

Theorem

The matching μ is stable.

Proof.

Let (m, w) be an acceptable pair. There are two cases:
(1) m proposed to w.

Then, there is a man m^{\prime} such that $\left(m^{\prime}, w\right) \in \mu$ and $m^{\prime} \geq_{w} m$.
(2) m didn't propose to w.

This means that before reaching w, m must have become engaged (till the end) to some woman w^{\prime}.
So we have $\left(m, w^{\prime}\right) \in \mu$ such that $w^{\prime} \geq_{m} w$.

What about optimal stable matchings?

What about optimal stable matchings?

- Maximizing the number of married people is boring:

Theorem (Rural Hospital Theorem, Roth 1986)

In any two stable matchings, the set of single people is the same.

- Maximizing an objective function over the set of pairs can be done in polynomial time (R. W. Irving, D. Gusfield 1987; really nice!)

The Variation

Introducing ties

- \leq_{m} and \leq_{w} are now weak linear orders
- Write $w \simeq_{m} w^{\prime}$ if $w \leq_{m} w^{\prime}$ and $w \geq_{m} w^{\prime}$.
- Finding the maximum-sized stable matching is NP-complete.

The $\frac{3}{2}$-approximation algorithm

- McDermid gave a polynomial-time algorithm
- K. Paluch gave a linear-time algorithm (2009)
- Z. Király simplified this algorithm (2013)

The $\frac{3}{2}$-approximation algorithm

- McDermid gave a polynomial-time algorithm
- K. Paluch gave a linear-time algorithm (2009)
- Z. Király simplified this algorithm (2013)
- I slightly simplified it further

What do we need to get a $\frac{3}{2}$-approximation?

Consider the symmetric difference of μ and μ_{OPT} as a graph.

What do we need to get a $\frac{3}{2}$-approximation?
Which components do we care about?

This can't happen. So μ is always a 2-approximation.

This can't happen. So μ is always a 2-approximation.

Figure: A 3-augmenting path

If we prevent this from happening, we have a $\frac{3}{2}$-approximation.

The Idea

The Framework

- We will define a set S of "generalized proposals"
- For each man m, let $S_{m} \subseteq S$ be the proposals involving m. Similarly we define $S_{w} \subseteq S$ for women.
- For an acceptable pair (m, w), there can be several proposals in $S_{m} \cap S_{w}$!

The Framework

- We will define a set S of "generalized proposals"
- For each man m, let $S_{m} \subseteq S$ be the proposals involving m. Similarly we define $S_{w} \subseteq S$ for women.
- For an acceptable pair (m, w), there can be several proposals in $S_{m} \cap S_{w}$!
- We will define a linear ordering \preceq_{m} on S_{m} and \preceq_{w} on S_{w}.
- Execute modified Gale-Shapley to get a "stable set of proposals" $X \subseteq S$.

What do I mean by "stable set"?

- For each man m, X contains at most one element of S_{m}. Similar for women.
- For each proposal $x \in S_{m} \cap S_{w}$, we have
- $\exists y \in X \cap S_{m}$ such that $y \succeq_{m} x$, or
- $\exists y \in X \cap S_{w}$ such that $y \succeq_{w} x$.

What do I mean by "stable set"?

- For each man m, X contains at most one element of S_{m}. Similar for women.
- For each proposal $x \in S_{m} \cap S_{w}$, we have
- $\exists y \in X \cap S_{m}$ such that $y \succeq_{m} x$, or
- $\exists y \in X \cap S_{w}$ such that $y \succeq_{w} X$.

Once we have X, we "forget" the proposals: We let

$$
\mu_{X}=\left\{(m, w): S_{m} \cap S_{w} \cap X \neq \emptyset\right\}
$$

Now, μ_{X} is a matching, but is it stable???

The Details

The ordering

For each acceptable pair $(m, w), S$ contains a tentative proposal (m, w, tent), a normal proposal (m, w, norm) and a desperate proposal (m, w, desp).

The ordering

For each acceptable pair $(m, w), S$ contains a tentative proposal (m, w, tent), a normal proposal ($m, w, n o r m$) and a desperate proposal (m, w, desp).

- Men prefer tent and norm proposals to desp proposals.
- As a tiebreaker, they prefer proposals to more desirable women.
- As a tiebreaker to that, they prefer tent to norm proposals.
- The remaining ties are broken arbitrarily.

The ordering

For each acceptable pair $(m, w), S$ contains a tentative proposal (m, w, tent), a normal proposal (m, w, norm) and a desperate proposal (m, w, desp).

- Men prefer tent and norm proposals to desp proposals.
- As a tiebreaker, they prefer proposals to more desirable women.
- As a tiebreaker to that, they prefer tent to norm proposals.
- The remaining ties are broken arbitrarily.
- Women prefer desp and norm proposals to tent proposals.
- As a tiebreaker, they prefer proposals from more desirable men.
- As a tiebreaker to that, they prefer desp to norm proposals.
- The remaining ties are broken arbitrarily.

The ordering - illustrated
alice $\geq_{\text {bob }}$ addie $\simeq_{\text {bob }}$ addy
$S_{\text {bob }}, \preceq_{\text {bob }}$

$$
\begin{gathered}
\text { alice } \geq_{\text {bob }} \text { addie } \simeq_{\text {bob }} \text { addy } \\
S_{\text {bob }} \preceq_{\text {bob }}
\end{gathered}
$$

$\frac{\text { (bob, alice, desp) }}{\text { (bob, addie, desp) }}$
(bob, addy, desp)

The ordering - illustrated

alice $\geq_{\text {bob }}$ addie $\simeq_{\text {bob }}$ addy
$\frac{S_{\text {bob }}, \preceq_{\text {bob }}}{\text { (bob, alice, tent) }}$
(bob, alice, norm)

[^0]
The ordering - illustrated

alice $\geq_{\text {bob }}$ addie $\simeq_{\text {bob }}$ addy

$S_{\text {bob }}, \preceq_{\text {bob }}$
(bob, alice, tent)
(bob, alice, norm)
(bob, addie, tent)
(bob, addy, tent)

(bob, alice, desp)
(bob, addie, desp)
(bob, addy, desp)

The ordering - illustrated
alice $\geq_{\text {bob }}$ addie $\simeq_{\text {bob }}$ addy

$S_{\text {bob }}, \preceq_{\text {bob }}$
(bob, alice, tent)
(bob, alice, norm)
(bob, addie, tent)
(bob, addy, tent)
(bob, addie, norm)
(bob, addy, norm)
(bob, adde, desp)
(bob, addy, desp)

The ordering - illustrated

alice $\geq_{\text {bob }}$ addie $\simeq_{\text {bob }}$ addy
$\frac{S_{\text {bob }}, \preceq_{\text {bob }}}{\text { (bob, alice, tent) }}$
$\frac{\text { (bob, alice, norm) }}{\text { (bob, addie, tent) }}$
(bob, addy, tent)
(bob, addie, norm)
(bob, addy, norm)
(bob, alice, desp)
(bob, addie, desp)
(bob, addy, desp)
bob $\geq_{\text {alice }}$ robert $\simeq_{\text {alice }}$ bob

$S_{\text {alice }}, \preceq_{\text {alice }}$
(bob, alice, desp)
(bob, alice, norm)
(robert, alice, desp)
(rob, alice, desp)
(robert, alice, norm)
(bob, alice, norm)
(bobert, alice, tent)
(rob, alice, tent)

Why is μ_{X} stable?

Observation

- For a man m, if $\left(m, w^{\prime}\right.$, ? $) \succeq_{m}(m, w$, norm $)$, then $w^{\prime} \geq_{m} w$.
- For woman w, if $\left(m^{\prime}, w\right.$, ?) $\succeq_{w}(m, w$, norm $)$, then $m^{\prime} \geq_{w} m$.

Why is μ_{X} stable?

Observation

- For a man m, if $\left(m, w^{\prime}, ?\right) \succeq_{m}(m, w$, norm $)$, then $w^{\prime} \geq_{m} w$.
- For woman w, if $\left(m^{\prime}, w\right.$, ?) $\succeq_{w}(m, w$, norm $)$, then $m^{\prime} \geq_{w} m$.

Proof: μ_{x} is a stable matching.

Let (m, w) be an acceptable pair. Define $x=(m, w$, norm). Since X is a stable set, there are two cases:

- $\exists y \in X \cap S_{m}$ such that $y \succeq_{m} x$. Choose w^{\prime} such that $y \in S_{w^{\prime}}$. So $\left(m, w^{\prime}\right) \in \mu_{X}$. Also, we have $w^{\prime} \geq_{m} w$ by the observation.
- $\exists y \in X \cap S_{w}$ such that $y \succeq_{w} X$. Choose m^{\prime} such that $y \in S_{m^{\prime}}$. So $\left(m^{\prime}, w\right) \in \mu_{X}$. Also, we have $m^{\prime} \geq_{w} m$ by the observation.

The Proof of the Approximation Factor

Suppose there was a 3-augmenting path:

- Choose $x=(m, w$, ?) such that $x \in X$.

The Setup

Suppose there was a 3-augmenting path:

- Choose $x=(m, w$, ?) such that $x \in X$.
- Since w^{\prime} is single in $\mu_{X}, S_{w^{\prime}} \cap X=\emptyset$.
- Since m^{\prime} is single in $\mu_{X}, S_{m^{\prime}} \cap X=\emptyset$.

Continuing the Setup

- Since w^{\prime} is single in $\mu_{X}, S_{w^{\prime}} \cap X=\emptyset$.
- Since m^{\prime} is single in $\mu_{X}, S_{m^{\prime}} \cap X=\emptyset$.

Continuing the Setup

- Since w^{\prime} is single in $\mu_{X}, S_{w^{\prime}} \cap X=\emptyset$.
- Since m^{\prime} is single in $\mu_{X}, S_{m^{\prime}} \cap X=\emptyset$.
- Since X is a stable set, there must be a proposal $x^{\prime} \in X \cap S_{m}$ such that $x^{\prime} \succeq_{m}\left(m, w^{\prime}\right.$, tent).
- Since X is a stable set, there must be a proposal $x^{\prime \prime} \in X \cap S_{w}$ such that $x^{\prime \prime} \succeq_{w}\left(m^{\prime}, w\right.$, desp $)$.

Continuing the Setup

- Since w^{\prime} is single in $\mu_{X}, S_{w^{\prime}} \cap X=\emptyset$.
- Since m^{\prime} is single in $\mu_{X}, S_{m^{\prime}} \cap X=\emptyset$.
- Since X is a stable set, there must be a proposal $x^{\prime} \in X \cap S_{m}$ such that $x^{\prime} \succeq_{m}\left(m, w^{\prime}\right.$, tent).
- Since X is a stable set, there must be a proposal $x^{\prime \prime} \in X \cap S_{w}$ such that $x^{\prime \prime} \succeq_{w}\left(m^{\prime}, w\right.$, desp).
- Since $X \cap S_{m}$ has one element, $x^{\prime}=x$.
- Since $X \cap S_{w}$ has one element, $x^{\prime \prime}=x$.

The Twist

- Since $x=x^{\prime}=x^{\prime \prime}$, we have

$$
(m, w, ?) \succeq_{m}\left(m, w^{\prime}, \text { tent }\right), \quad(m, w, ?) \succeq_{w}\left(m^{\prime}, w, \text { desp }\right) .
$$

- So ? can't be desp, and ? can't be tent. So ? = norm.

The Twist

- Since $x=x^{\prime}=x^{\prime \prime}$, we have
$(m, w$, norm $) \succeq_{m}\left(m, w^{\prime}\right.$, tent $), \quad(m, w$, norm $) \succeq_{w}\left(m^{\prime}, w\right.$, desp $)$.
- So ? can't be desp, and ? can't be tent. So ? = norm.
- From the observation, we see that $w \geq_{m} w^{\prime}$.
- From the observation, we see that $m \geq_{w} m^{\prime}$.

The Twist

- Since $x=x^{\prime}=x^{\prime \prime}$, we have
$(m, w$, norm $) \succeq_{m}\left(m, w^{\prime}\right.$, tent $), \quad(m, w$, norm $) \succeq_{w}\left(m^{\prime}, w\right.$, desp $)$.
- So ? can't be desp, and ? can't be tent. So ? = norm.
- From the observation, we see that $w \geq_{m} w^{\prime}$.
- From the observation, we see that $m \geq_{w} m^{\prime}$.
- Looking closely, we can't have $w^{\prime} \simeq_{m} w$ or $m^{\prime} \simeq_{w} m$.

The Twist

- Since $x=x^{\prime}=x^{\prime \prime}$, we have
$(m, w$, norm $) \succeq_{m}\left(m, w^{\prime}\right.$, tent $), \quad(m, w$, norm $) \succeq_{w}\left(m^{\prime}, w\right.$, desp $)$.
- So ? can't be desp, and ? can't be tent. So ? = norm.
- From the observation, we see that $w \geq_{m} w^{\prime}$.
- From the observation, we see that $m \geq_{w} m^{\prime}$.
- Looking closely, we can't have $w^{\prime} \simeq_{m} w$ or $m^{\prime} \simeq_{w} m$.
- So $\mu_{\text {OPT }}$ is unstable because of (m, w) !

The Twist

- Since $x=x^{\prime}=x^{\prime \prime}$, we have
$(m, w$, norm $) \succeq_{m}\left(m, w^{\prime}\right.$, tent $), \quad(m, w$, norm $) \succeq_{w}\left(m^{\prime}, w\right.$, desp $)$.
- So ? can't be desp, and ? can't be tent. So ? = norm.
- From the observation, we see that $w \geq_{m} w^{\prime}$.
- From the observation, we see that $m \geq_{w} m^{\prime}$.
- Looking closely, we can't have $w^{\prime} \simeq_{m} w$ or $m^{\prime} \simeq_{w} m$.
- So $\mu_{\text {OPT }}$ is unstable because of (m, w) !

Other Stuff I Was Doing (not part of the talk)

The Stable Marriage Polytope

AKA "the actual C\&O stuff"

- If \mathcal{A} are the acceptable pairs, each matching is a point in $\mathbb{R}^{\mathcal{A}}$.
- The Stable Marriage Polytope is the convex hull of all stable marriages.
- Without ties, the SMP can be nicely described by inequalities.
- P. Eirinakis, D. Magos and I. Mourtos (2014) proved (nicely) that the SMP without ties has diameter at most $\frac{n}{2}$.
- Using a similar argument, I proved (disgustingly) that the SMP with ties has diameter at most $\frac{2 n}{3}$.

Improving on $\frac{3}{2}$

- Chien-Chung Huang and T. Kavitha (2014) found a $\frac{22}{15} \approx 1.4706$-approximation in the case of one-sided ties.
- They also found a $\frac{10}{7} \approx 1.4286$-approximation for the special case where each tie has length at most two.
- I'm trying to prove that their first algorithm is actually a $\frac{13}{9} \approx 1.4444$-approximation.

Thanks for listening!

References:

Pavlos Eirinakis, Dimitrios Magos, and Ioannis Mourtos.
From one stable marriage to the next: How long is the way?
SIAM Journal on Discrete Mathematics, 28(4):1971-1979, 2014.
\square Chien-Chung Huang and Telikepalli Kavitha.
An improved approximation algorithm for the stable marriage problem with one-sided ties.
In International Conference on Integer Programming and Combinatorial Optimization, pages 297-308. Springer, 2014.Zoltán Király.
Linear time local approximation algorithm for maximum stable marriage.
Algorithms, 6(3):471-484, 2013.

Katarzyna Paluch.
Faster and simpler approximation of stable matchings.
Algorithms, 7(2):189-202, 2014.
Alvin E Roth.
The evolution of the labor market for medical interns and residents: a case study in game theory.
Journal of political Economy, 92(6):991-1016, 1984.

[^0]: (bob, alice, desp)
 (bob, addie, desp)
 (bob, addy, desp)

